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SUBLIMATION OF A BLUNT BODY IN THE VICINITY OF THE
STAGNATION POINT IN PLANE AND AXISYMMETRICAL FLOW
OF A GAS MIXTURE
G. A, Tirskly
(Moscow)

The problem of the sublimation of a body in the vicinity of the
stagnation point was examined in an earlier work [1], where a numerical
solution was carried out for the case of quasistationary "adiabatic”
(disregarding heat transfer into the body) boiling of solid carbon
dloxide in anaxisymmetrical case where the Mach number of the incident
flow was 6.2, However, the conditions for attaining such a maximum
regime of sublimation were not obtalned 1n the work and no solution
was glven which permitted the calculation of the sublimation of bodies
with other physical properties under arbitrary flow conditions,

A simplified analysis of the sublimation of a solid at a given
sublimation temperature Tw has been presented [2] which i1s based on
the method of integral relationships. This case also corresponds to
the "boiling® of a solid since during sublimatidn, the temperature
prior to bolling temperature on the vaporizing surface 1s unknown and
‘must be determined while solving the problem.
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In the present article we obtained an accurate solution (solution
of the type of a uniforml& propagating wave ) of the problem of
equilibrium and nonequilibrium sublimation of a blunt body in the é
stagnation region with an arbitrary dependepce of the physical prop- i
_erties of fhe body on temperature, . |
. For a Prandtl number ¢ = 0.7; 1 and a Schmidt number Sc = 1 the
solution wés obtained numerically. By means of asymptotic integra-
tion a solution was also obtained for arbitrary o and Sc > 0.5. It
was demonstrated that if the coefficient of accomodation f > 0.1 then, f
with sufficient accuracy for application, vaporization of the body will
proceed according to diffusion kinetics (equilibrium vaporization) |
for u, ~ 10° m/sec, when f < 0.1 nonequilibrium vaporization must be
.taken into account. |
The necessary and sufficlent condition under which boiling at the
sublimation front takes place was obtained (7). Wnhen boiling is
attalned the subtlimation rate and the mass velocity of sublimation are
in a final form (Eqs. 7.4 and 7.5).
The temperature profile in the body for an arbitrary dependence
of thermophysical properties of the body on temperature are found in
quadratures, The calculation of any specific problem in the general
case reduces to a solution of a system of three finite equations for
the determination of concentration, temperature at the vaporization
front, and rate of sublimation.

1, Statement of the Problem

If a mixture of gas flows past a solid body with a vapor partial
pressure of the body in the incident flow lower than the pressure of
the saturated vapors at the body surface temperature and if the sur-

face temperature is lower than the.temperature of the triple-point

FTD-TT-63-311/1+2+4 -2-



of the phase dlagram, then the body will sublimate. For this purpose
we willl work out for the sublimatlion front, the approprlate tempera-
ture and mixture composlition which, 1like the positlion of the sublima-
tion front, are not known beforehand and must be determined while

. Solving the problem. '

The process of sublimation of a multlcomponent body must be con-
sidered as a simple heterogeneous chemical reaction with the stoichio-
metric equation

-

N, 2
z‘, v'k Ay —» 2 i Ax,

& -t | kmt (1-1)

where A!, A, are the chemical symbols corresponding to the solid and

i

gaseous components; vi, v, are the stoichiometr;c coefficlents of the

1
solid and gaseous components respectively; No is the number of com-
ponents in the solld phase; and Nt 1s the number of . .::ponents pro-
duped durlng sublimation of the body (for example, during the vaporiza-
tion of S10z a four-component lon vapor of 5102, SiO+, 0; and ot 1s
formed [3]).

The mass concentrations.cis(i =1, ..., N¥) of the gaseous pro-
ducts approaching the sublimation surface from the side of the solid

phase are assoclated with N' by the equation

c ¢ N
15 N’s \
———— T2 e s o =T Clg = 1
(O%TA My’ k).:l ks ’

where M1 1s the molar mass of the i1-th component. Hence the composi-

tion of the gaseous products produced by vaporlization of the body will
be

. vidl; . .
Ciy = n=£.....N.

LY .
2, ‘ (1.2)

ham]

Then the problem of a stationary regime of sublimation in the stagna-
tion line (plane case) or in the stagnation reglion (axisymmetrical case)
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of a blunt body placed in a statlonary gas flow consisting of N = Nt +
+ N" components leads to the solution of a system of equétions of a

nonstationary boundary layer for a multicomponent gas mixture:

vy . a . -
o '“;—’:f oz (puznt) - fg (or) =0, n=1,2 (1.3)
o | ‘[) Ju o . O Ow _ du . ¢
NG g g =edeleg).  2=(F), (1.4)
de; de; dc; F ) de; . .
'P(Tﬁ":'"éf"}'vﬁ'y"):. H(PD";TJ)' =1, N; (1.5)
o’ , o, _ak ERE - 6
W) e ooy Sug) (18
' N oo N N
P =T Rggy b= = 3otk h) = A (1.7)
=1 kw) k=
N 'ls N o
hy = en T "= 2 ehi =T, cp= 2 ks h® = 2 cxhy:
K= A=g b=y
1 wr _1 A
cr—Tv —P—_—ch]:'

togéther with the equation of thermal conductivity in the solid body

PiCe3r a;;l 53;(11 ?GTTI) v iy = ;;IE;A’ (Tl)' M= X‘L (T’)' (1 .8)

Here x, y are the coordinates assoclated with the body along and
normal to the initial surface of the body respectively; u and y are

the components'of‘the velocity vector with respect to x and y
respectively, p 1s the density; p - pressure; T and T, — temperature of
the gas and body, c1 — mass concentration of the 1-th component of

~ the mixturel hi = h1 + hg.= c, T + h°' and ¢_ — specific partial

1)
"~ enthropy and Specific heat foiiconstant pressi;e of the 1-th component
respectively; no — "zero enthalpy” of the 1-th component [#]; u, A,
Dig — coefficlents of viscosity, thermal conductlvity and diffusion
- of the mixture; R — universal gas constant; p,, c,, A1 — denslity,

heat capacity, and coefficlient of thermal conductivity of the solid
body, L(T,) and N(Ty) — given functions of temperature.

Y



It 1is ‘easy to show that in an approximation of the boundary-layer
theory a term‘with baro diffusion drops out of the equations of dif-
fusion (1.5) and the equation of energy (1.6).

' When writing equations (1.5)-(1.7) we must also assume, in addi-
:tion to the usual assumptions of boundary-layer theory in the stagna-
tion region that all of the Maxwellian diffusion coefficients are
equal (for a binary mixture this supposition is satisfied exactly),
that the effect of thermal diffusion 1s small, and that the mixture is
ideal. The eqnation of thermal conductivity (1.8) 1s written on the
assumption that the thickness or the thermal boundary layer in the
body 1s much smaller than the radius of curvature of the surface of
the body in the vicinity of the stagnation point (line).

System of Equations (1.3)-(1.8) is solved for the following
boundary-value conditions:

1) on the outer edge of the boundary layer
u = Bz, G = Cin (i=1,---.N), h = hei™ (1.9)

2. from the law of conservation of mass and energy'on the surface
‘of sublimation which is unknown before the solution of the problem
we obtain [15] p (D~— v) = p,D;

(D — ) .pD., =P,q.D (i =teee N (1.10)
. pe; (D — v) TpD:z-‘-,-J= 0 (F=1,.0 N

A | Y
. p(D—1) [l (To) + Le'\h —2 C,,hg)] =M ‘3._ — pD,q Le 2 ~

im)

' . N o
P (D~ )[I(T)+Le(b* =3 cuhf)] =2, Tt~ oD,y Lo s
i-l

3) at infinity, in the solid body

T‘-T_Qg (1.11)
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where D is the displacement velocity, normal to the surface, of the
sublimation front relative to the body and 1(To) 1s the latent heat
of sublimation which 1s dependent, generally speaking, on the surface
of sublimation To.

' Since hereafter we will trace the stationary regime of sublina-
tion, we will not put forth the initial conditions., The formulated
problem 1s a parabolic system of nonlinear equations (1.3);(1.6),

(1. 8) of the 2N + Tth order with 2N + 5 conditions (1.9)-(1.11) which
contain, in addition, ‘the two unknown quantities To and D, In order‘
to complete the problem it is necessary to introduce four additional
relationships which characterize the kinetics of sublimation.

For a sufficiently dense IiSCOUS mixture we can, of course,

'Z'assume an equality of tangential velocities at the sublimation front;:»v_‘

o 1e.

' . u=0. o o o (1.lé)

| It'is'knoun [6] that during weak vaporization, i.e;, when con-
vection heat transfer from the vanorizing surfacezis'significantly"
lower than molecular heat'transfer,:the temperature Jumpdis of the
order of A/a (the ratio'ofwthe length of free'path to the_character;
istic dimension of the probleno,‘i,e,,.T =Ty = Tq.ibWhen'convection
‘heat transfer is. significantly greater than molecular heat transfer,
the temperature Jump and deuiation of vapor partial préésure.po form
eouilibrium p(d) at‘the sublimation.front will be of'thezorder of v/cu
(the ratio of the vapor flow.velocity to the average veloclty of'the
thermal motion of the molecules). If it 1s assumed that during
vaporization the thickness of the boundary layer remains small'with
respect to the characteristic linear dimension, then'v~—V§§(35;uwML

where u, 1is the velocity of an undisturbed flow, d is the radius of

. -6-



cuwrvature of biunting, and v 1s the kinematic coefficient of viscosity.
Then v/c << 1, (¢ ~ 102 to 10°® m/sec) and in this case we can assume

T = Ty = To (1.13)

and _ 4
' po= PO =p, ety = PY(T)

f-where.the'last relationship 1s the equation of the vapor tension curve;
p; and T; are some values of pressure and temperature on this curve;
pi(i = 1, ..;, N') is the partial pressure of the i-th vapor component.
- -If hass concentrations are introduced then the equation of the vapor
;fénsion curve may be written in the form

-*r(?‘)z = 2_‘. _ (1.1%)
. For a binary systentl,‘l, with use of the van der Waals formula [4]

for ‘the vapor tension curve, Eq. (1.1%) 1s rewritten as
M, -1
o = [1 +55 & 0*1’7{('1’: - %—) —1]} . (1.15)

In order to clarify the influence of nonequlilibrium vaporization, 1l.e.,
when po # p(0), in place of (1.15) we will use the fundamental formula
of Knudsen-Langmulr for the mass velocity of vaporiiation:

aD = 1}/ s b~ » O 20 = p9(F). (1.16)

vhere f 1s the coefficienf of accomodation expressing probability that
a molecule of vapor strikiné the vaporization surface will adhere to it.
Formula (1.16) was derived on the assumption that the flow of mol- |
ecules striking vaporizing surface has a maximum distribution for a
quiescent gas with a temperature Tp.

As has been demonstrated [6], for a mass vaporization rate (if

-T-



the temperature jump is neglected) when using the distribution function -
in an approximation of "13 moments™ for the calculationioflthe‘molec-
ular flux impenging on the surface, a formula analogous to (1.16) is
obtalned but in place of f, we must use 2f. Sirce the;law according
"to which dispersion of the molecules of vapor takes.place'is'unknown,
we will use the relationship in'(l 16) We note that'certain authors .
(7] maintain'that-f ~ 1, Introducing the molar vapor concentration
c* into (1.16) we obtain for a binary gas—vapor mixture

: qlD-]pU»(R-—l)]/FT:;: ; esﬁ%:;;:;%r 4'.. - u(1,17).
'.Henceforth we will consider nonequilibrium’vaporiaation‘forhthe case
. of a binary gas—vapor mixture and use Eq. (1 17) Thus, additional
conditions (1.12), (1-13) (1 14) or, for ‘the case of nonequilibrium
.vaporization, (1 17) close the problem. The effect of dissociation
and radiation are not taken into account when formulating the problem.-

It is known 8] that for flow stagnation in the vicinity of the

- stagnation point, the - influence of - equilibrium dissociation and radia-'

tion on the magnitude of the thermal flux 1s small 1f ‘the temperature
of the wall 1s lower than the temperature of dissociation (1600 2200°K)
" But at such wall temperatures sublimation for most materials may attain

a significant value,

2. Coefficient-of Molecular Transfer and Prandt and Lewis Numbers.

. Generally speaking,‘accurate expressions for the.coefficients of

' transfer (coefficients of viscosity, thermal conductivity, diffusion,
'and thermal diffusion) for gases and gas mixtures may be obtained by
'calculations according to. the law of statistical mechanics and the :

kinetic theory of gases when the necessary data concerning inter-

’
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molecular forces'is'available. However,.these formulas'are too com-i
plex for practical calculations. | .
' Recently approximation formulas have been derived from exac* ‘

formulas for the coefficients of viscosity [9], and thermal con-

. ductivity [9,10] of mnlticomponent gas mixtures, which over a wide

range of temperatures [11] give values differing little from the
exact formulas of the kinetic theory of gases.: Comparison of these |
formulas with experiments [9,10] also glves satisfactory agreement
These formulas, in essence, are corrected first approximation obtainedf
from a rigorous kinetic theory of gases and are very convenient for
numerical calculations.' In order to calculate the coefficient of

viscosity of a mixture it -is necessary to know only the molecular

weight and coefficient of viscosity of the individual conmonents of

the mixture at- the same temperature at which the gas mixture is found
In order to calculate the coefficient of thermal conductivity, we
need to know the molecular weight, the coefficients of thermal con-
ductivity of the pure components, and also either the viscosity of

" the individual components or the specific heat of the components at

Athe same temperature.at which the gas mixture is found.

A l.. Mixture viscosiél. The approximation formula for‘the coef-

ficient of viscosity of a mixture obtained from the elementary Kinetic
theory of gases [12] and verified from considerations of the strict
kinetic theory of gases [19] has the form

-

u= Pa(1-~$'0u—) Gu—.,y—(i "‘) (1'5’7‘ii)=:‘jl";;l . (2.1)

i= i

wls M . Y @2 .
wl)s i) W (’); ( “'5) () =T (2.2)

vyl = (a7 Y enIey Ty



where “i —-coefficient of viscosity of the individual components'
'(ro)i = (ro)11 — distance between molecules at which the energy of
interaction i1s zero; € = &4y —-absolute value of the maximum energy
or-attraction, k — Boltzmann constant; Y(2, 2;.1y) — average reduced
Ltcollision cross section which depends on the temperature and potential
lenergy of molecular interaction I(ti) - correcting multiplier depend-
:;ent on Ti, which, for a wide temperature range, differs from unity '
| by less than + 0. 08 [13]. o

When T > 3 the function Y (2, 2, ;) s slightly dependent‘on
“temperature.' Therefore the magnitude of . ”31’ within the limits of -
accuracy of formula (2 1) may be considered constant for the given |
vapor. Actually, for example, for vapors of carbon dioxide COg (i)
" and a‘“ ’J) ‘we have [13] [(ro)1 = 3 996A (ro)J = 3, 617, ei/k 190°K
e 97°K]

Y(.’gr)l(r)
Y. (.’.:-r)l(r)

‘and € '
= 0 S:>5 (aOO‘h) = 0,892 (1000°h), = 0,904 (2000°K),

= 0,907 (4000°1\)
Whence nji ~ 0 729 for a mixture of Coz and air in ‘this temperature
range (disregarding dissociation) '

Formula (2 1) may then be written as the product of the function

.which depends only on temperature times. the runction which depends

only on composition. ‘

N TN S S (2.3)

* where ujx(T).is'the-coefficient of viscosity of some'component'of.the :

mixture, -

. N N N ‘ X N
40 =3 (1 + 3 Gi"'fi') = ﬁlﬁ) n(l
! > (w,

)‘ L
i1 jai =1 i i ‘i

-10-
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2. For the.coefficlent of thermal conductivity of the mixture

we will use an approximation formula derived from the exoreasions of
the rigorous kinetic theory of gases [10]. For monoatomic gases or
for gas mixtures with frozen internal degrees of freedom this formula

has the form

. X N -
S 17\:(1-‘-2&5‘(—' .

. . | (2 5)
A comparison of" this formnla with the exact formulas of the . kinetic
theory of gases-and with experiment~y1elds satisfactory agreement [10].]'

: For a mixture’ of polyatomic gases the formula takes the form-
| f-—“n.(tT\‘c:; \ ST (2 6)
“.‘l- joi S . .

= A9 Formula"(2.6) changes into (2.5). Since.

When PN Ay

i

~then' from (2 5) and (2 6) 1t follows that
a;,=1,0656;,. T . (2.7)

The-rétio xi/XJ for polyatoﬁic molecules with consideration of the
internal degrees of freedom is given by the expression |

o ”"" (:) 5 Eis rl;‘;,-="£ii;. Ei = 0,415 + 0,354 2,
where Ei 1s a correction mnltiplief recently refined by Hirschfelder.
[14] for gases with polyafomie chemically reactive molecules and
molecules with excited: electron levels. |

Formula (2.6) may also be written in the form

A= ;') (T) LY (ci)v (2.8)

-]l



where li(T) 1s the coefficient of thermal conductivity of some com-
ponent of the mixture

g (c) = &1-1-2_0‘:, ) —-)’ (uj\ x,‘la,,(i-r? c"'?‘-)"‘ o (2-9)

i iei N joi

. . . . | i

, 3. ‘The diffusion coefficients'in‘a multicomponent mixture are
.expressed.by the- diffusion coefficientsAof a binar& mixture of all
.possible pairs ‘of components of the mixture » by ‘the molar concentra-
.xtions, and by molecular weights of the components proportional to the.
Acorresponding binary diffusion coefficients [13] '

b, Schmidt number S¢ = u/pD12., By virtue of the structure of :
Formula (2. 3) it suffices to calculate the complex "J/PDiJ’ then it
s possible to calculate u/'pD1J also. We have '

-

. - . . N ) .
.l L M ; . M - . . . ] .
'_ylmf;;]_lﬁ.l‘lf(z T, )‘ - ,u" LS - . (2.10)

2 Uo)j ) (’ ’ t )
.y i r i !
Ri= ", 2- y (‘ 2 T ) (IJ)( i,))l

| | (ro)u——, ~redi + (fo);l» Tii—g."fis= &ej. ‘
The product J(TJ) (1 ;‘AiJ) is‘ueakly dependent on temperature and com—~'§l
position of the mixture [13] and its value varies between 0.97 and 1
for a wide range'of temperature and»composition,changes.[13]. The
ratio Y(1.1; 713)/Y (2;?;13) 1s also weakly dependent on temperature
for sufficiently large Yalues of T, ‘and 7, (r > 3). For example, for
a mlxture of molecular hydrogen and air thls ratio . equal to 0.830
for T = 600°K and 0.819 for T = 2400°K etc. Therefore, the value of
iJ 3 within the limits of accuracy of Formula (2 3) may be considered
constant and characteristic for the given pair 1J., For example, the

Schmidt number for a binary mixture will be

-12-
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+(1+ 6 =)

(2.11)

'ﬁi e., it will not depend on temperature buy only on composition. The
~.maximum variation of. Se with respect to ¢ 1s° equal to

Sc(e; =0). u) 2
Scie; =1) \Mj ®iss

'for example, for’ vapors of hydrogen and air ~ O 9,
' 5. Lewis number, = k/pc DiJ" By virtue of the structure of

- Formula (2. 8) it suffices to calculate the complex xd/b p 1J’ then it
'l,is possible to calculate Le also. We have ‘ :

'The_maximum variation-of Le for a binary mixture is equal to

‘1. c {e; = 0) ,,' M E’ M\ . .
e (t‘ - ﬂ [ E:( ‘) Z,, = m Ei (” ) X(,, (2.13)
where‘cgi' pi Mi is'the molar heat capacity of the i-th component.

Since the first two factors in (2.13) are close to 1, the variation
of Le with a change "of composition depends mainly on the ratlio of the
" molecular weights of the components.

6. Prandtl number, g = ucp/x = Sc/Le.

3. 'Formulation of the Boundary Value Problem for a System of
Ordinary Differential Equations

. ”32roceeding»from the form ofdthe boundary-value conditions (1;9)
and (1.11) and taking into account that the solution ylelding a
stationary regime orisublimation must be a type of uniformly propaga-
tion wave, we 'will search for a solution of Eqs. (1.3)-(1.8) with
conditions (1.9)-(1.17) in the form:

-13-



for a gas-vapor mixture

= B2g'(n), v-.——V‘[l/ 20 g () — D"]. Ami,2,
h* = hg - (h— h3) 2 (1), Ct=%+(¢x«-—cio)6's('l)- im1,ee, N, (3.1)

n

§;°a,_(’:°°::) (y— Di), ooav-”-_;, vy P

svoo PQ.
for a solid body -
; : B% . E
Li=Totmm=(1) o-n, o (3.2)

where K 1is ao»arbitrary constant,'the‘Subscripf‘Q reférSQtO'unknoﬁn
vaiues of the parameters at the subiihation front and the sﬁbécript
w refers to conditions outside the boundary layer.

The law of motion of the. sublimation rront for a. stationary regime
of vaporization will be o

Jo=Dt, . - (33)
where D 1s not known before solution of the problem of the displace-
ment velocity of the sublimation front .

Substituting Egs. (3.1)-(3.3) into Eqs. (1.3)-(1.8) and con-
ditions (1.9)-(1.17) we obtain for determination of the four functions

? 2, 8 = g(o =1, ..., N),‘eg and the parameters D*, g = To/T.,

cyo(l =1, ..., N) the following nonlinear boundary-value problem: |

K (py’) * + neg” = ¢ — pep™, \

e Vol L Byl |

P R VN (1 by ':]' M' . %x‘“i' I , (3.4)

K (b1 Sc'g)" + nog’ = 0, |} S
J

L T

Vo .f'.. SRS U




(L (0,) 0,) + D* N (0,) 0, =0, Z°'=D'° _o%)w } (
0wy ={NEyam, =
9’ (o) = 1, 8() =1 (o) =1, | (3.6)
1 (0)=0, g(0)=z(0) =0, "l/ —an(0>=o' 0,(0) = 0y,
j"~_%,.q, (0)+& FO=0 : G teee )"
—= q»(0>+§;:'(0> -0 G Wt e M, } (5.7
~mp<0)[z( o)+ Ley (15— zq.h.,)]+a;'x(h,.-h.>z(0>-o
=y ‘
(3 S o }
A; . - _ 3. ‘3.8) :
Cno= {1 + i[Pﬂ Xp —= :((’ —%)—1]} l' p=p°°_PN23"" P";—’Pm,!
0, (—oc) = 1. (3.9)

For nonequilibrium vaporization in the case of a binary gas-vapor

mixture with the use of (1 17) in place of (3.8) we obtain
p.ll.. fpm M .
l/ w00 = vac;l/z_‘an'r.‘”—”' (3.10)

" here .the following designations are introduced:
£(To) =UTo) +ppie, T_, 1Q (0.0) — Q (1)),

p=& 0 T 0 Te - ]

=, O=Tt, B,=aT
Pote’ T’ (] T“' 0]0 7‘:' C,”"= ;fv ‘ (3.11)
V -

“l""‘f’Pl‘.v ’1=:i:-.Pxo = p, (T,).
The system (3. 4) (3.5) 1s a system of nonlinear ordinary differential

‘equations of the 9th order with N + 2 unknown parameters 0 (1 =1,
cees N), D" and To, which enter into conditions (3.7), (3.8) or (3.10).

-15-



Relationships (3.6)-(3.10) glve exactly N + 11 conditions., Consequently
1t may be expected that the solution of problem (3.4)-(3.10) 1is
determined uniquely. . ,

After solution of the problem,‘the,mass Velocity of.sublimation
+1s determined by the formula ' '

. p—
PicD = po D° VY 3ve, = ng (0) 5o | 'F:‘:'::":—ﬁ:%
. a0

€io0 — %in ‘/-P»}‘;K 3V¢ . . | ‘ (3 . 12)

-—REOTI
The.température‘profile in ﬁhe body is found after this‘in.quadrﬁtures‘
[15]: R |

, ‘ S e, i , .

oom = — | ga=em- | (3.13)

From (3.10) 1t 1s possible, after solution of the- problem, to
calculate the'deviation of the vapor partial pressdre po'over the .
sublimation surface form the saturation pressure p(o) at a tempera-
ture To:

R = .‘_"_. = .L_‘ - pwVé‘T‘: /2.1[fii..' Polt .
po =10 e==T0=1 T, p“p:.A" {3.1%)

We will evaluate the order of the parameter €. For T, ~ 1000°K,
v, ~ 1 cm®/sec, p, ~ 10"* gr/cm®, B ~ 10%sec-! (with u_ ~ 103m/§e¢,
d~1m, To ~ 1000°K and p(0) ~ 100 mm Hg we obtain & ~ 10f5/? f‘{.
Since |9(0)| < 1 for moderate vaporization, then R = 1 + 10-3¢-2,
Consequently for f > 0.1 it is possible to obtaln with a higp accuraéy .
the equilibrium vaporization and to use Eq. (3.8). For f < 0.01 ‘it
is necessary to calculate nonequilibrium vaporization and to ﬁse
Eq. (3.10). In this case the coefficient of accomodation must be

known exactly.,
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4, The Case of le = 1 (g = Sc)

e This case is interesting in that a number of conclusions may be

l reached before complete solution of problem (3.4)-(3.10). Since for
many mixtures the Lewis number 1is close to unity (2), these conclusions
* Will be of practical interest.

‘ Actually, ir sublimation proceeds according to difrusion kinetics
~(condition 3. 8) and Le & 1, then z(n) = g(q) and determination of the
condition and temperature at.the-sublimation surface leads to a solu-

tion of the final'systemqu.n equations

Z(To)-i-h,—‘z t‘fhiﬁ P
: =2 D=t N,

Ix;—-h'; fioo— Cig

(h1)

- : - N2
Go=0G>N:1),  ey=1— e,

kamy
together with the equation of the vapor tension curve (3 8) for N +1
unknown ¢, (i =1, ..., N) and’ To.

For- a binary mixture (c = c, c,=1-2¢, cg = 1) the coneentra-

J

tions of vapor and temperature at the sublimation surface are determined

from a system of two equations

(h;—h;o+cw(h;0—h:»)_co—fm. co=fi+,, pe (\‘) V“"")"”J o (4.2)

Z (To) . 1—o

It is interesting.to'nqte that these results do_not erend on the
charaeter ef the dependenee.of transrer coefficients on temperature
and composition and aretassociated only with the assumption that Le =
- L. , _ ', .

It follows from (4.1) and (%.2) that "bolling" (z“ 4 Cq0 = 1)
on the surface of the body in the case of equilibrium vaporization is i
attained only in the limiting case of an infinitely large thermal'flux

L4
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from the gas. From (3.7) and (3.10) it follows that this fact does not
depend on the assumption that Le = 1 and is assoclated only with the
assumption that sublimation proceeds according to diffusion kinetics. ;
If sublimation is nonequilibrium (f << 1) and the coefficient of 5
~accomodation is known, then when "bolling" is attained, a solution to i
| ' the problem (3.4)-(3.10) may be obtalned in final form.
‘ A'Actually for "boiling" ﬁ(o) = DPgo 18 the stagnation pressure, o
from.which, if ‘the pressure at the stagnation point Poo 18 taken as
the characteristic pressure p*, we will obtain To = T, = Too, Where l‘.;
Too 18 the temperature onAthe vapor tension curve which corresponds |
,to'the pressﬁre'of the vapofs Poo.  From the finst. eduation in (4. 2),
substituting in the left hand part To = Too, We find the concentration ' ?
of vapors co on the sublimation surface. From (3. 10) and the first .
' equation in.(¥.2), gssuming for simplicity that ¢, = 0, we obtain the
. rate of sublimation in the final férm: -

iy MG, (Toy—T'g) Y- , ’
Dz Dlwye 1 - - ‘?; 00 i
y [V { .‘:KI(TW[ H{Tw)+ 205 T__[Q (0,0—Q (1) 'ui] ’ (4.3)

1710 "e” =

where cpJ is the épecific heat'for a constant pressure of the incident

flow,

The mass veiocity of sublimation will be

Y . i T =T ", |
ool = — i) —i_[1 T Mt 4.4
10 1 Pon ]/ --T.V/”'w[ i Ta) + 5,0000 T 1Q (g — Q) M ] . ( )

The temperature profile'in the body 1s found from Formula (3.13).

5. Numerical Solution of the Problem for ¢ = 0.7; 1 and Sc = 1

Solution of Problem (3.4)-(3.10) in the general form 1s assoclated

with humerous calculations owing to numerous defining parameters;
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G M

n. o; Sc, Tt ATy =l M= G =100 )y 1y (5.1)
o T o 19, VBV /AT, .
o«

Pyo A .’ pW) FTA

and dimensionless functions sk =g, 2. Q (0, $(Tu7), 1(T)hs.

We therefore made certain simplifications which reduce the nunber of

these parameters, |
First we will assume that

?,,m l.‘ .
=g, G .’)I"‘ -

G-yt (-2)

oo "'00

This corresponds to the- case where Ie X 1 or where the components or

- the mixture have similar specific heats at a constant pressure (cp‘ 2
~ c, ) or when sublimation is weak (c << 1) , Since for a large-' .
number of gaseous mixtures these assumptions are always fulfilled to i

a certain degree. simultaneously, then for these mixtures assumption
(5. 2) will be valid.

' Using Formula (2. 3)'for the viscosity of the mixture andl"l

‘Sutherland's formula for the viscosity of the J-th component, we obtain

o= 12 Pule) M ') (-o+',o)“"'(3 1— 1)z ()]
lfl Bopo @, (€4) "s( ,o'i'(c,,,l‘p) [sg+ (U —30z(m)}°* L (5 3)
' $in = s:"r. ' hy ' ' )
jo f‘m—c’—"v -'ﬂa":.‘"

where SJ is the Sutherland constant and is equal to 107 for T = 97°K
180 for T = 970°K and 823 for T = 4850°K [13]. During vaporization
of most condensed medla in air ‘Wwe have cy /c >1, M/Mo < 1. The

" ratio ¢ (01)/0 (c o s close to unity. Thererore, the product of
the first three factors 1in (5.3) 1s.close to unity and for certain
mixtures 1is a slightly varying function of the composition (this
function may be calculated on the basis of the formulas of (2).

: Therefore, we set this product equal to some average constant value

"~ and designate it vy
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e

2 | (5.4)

‘

- 9.6 W
K = td A

where the upper bar indlcates the average value of the parameter
between its value at the outer edge of the boundary layer and at the
'sublimation surface, Obviously the parameter K is unknown until
solution 6f the problem. Taking into account also that ¢, x c_ we

Po P
obtain

—_ g N T (e T ,
ll.? =K '®(), ® () = 2 .”+:‘+“°_m’ . (5.5)

- and finally

'-.pwp'.‘=:°+(i—z,).z. (5.6)

we note that this approximaticn will effect mainly the value of
v"(o) = a. But since g!(0) and z!'(0) ~ al/® 1t follows from an

asymptotic solution (6) that the simplification (5.6) has little effect

on the product of g'(0) and z1(0), through which the rate of sublima-

tion and temperature at the sublimation front are determined from (3.7).

After these assumptions, System (3-4) is rewritten in the form
@) + gy’ =gt — 5~ (=22 (5.7)
(@o12")" + 0z’ = 0, (D Sc’g’)’ + ngg’ = 0. (5.8)

A formal solution of the last two equations in terms of the constants

o and Sc with regard to (3.6) and (3.7) will be

z (.n) !] s 20, @) 6’(’1) =9 (n: Sec, 2a, %) ’ (5.9)

w(%0;¢6,2,a) °  (00;3¢, 3,, a)*
where

0N T,2,0 = §.0“ exp(-—- nt
° .

LU, P

@ (1) @ldn)dn, o= g .
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Determining z!(0) and g'(0) from (5.9) we obtain from'(3.7) N tran~

scendental equations

ho,—A; .
K anaw (00; G, 2,, @) = _-T?_:' (5.10)
heo=hy & @(00:3, 20, 3) Sin = Ciw it ... ‘
.:Z(r.) = RGeS 503 = =t 'N_." - (5.11)

If sublimation proceeds according to diffusion kineticS-(f > 0.1), |
then, adding the first Eq. (3.88) to (5.10) and (5.11) we obtain a
system of N + 1 equations for the determining of N + 1'unkﬁowns:'

@, Zo, ©4 (1=1, ..., N=-1). ' '

" If sublimation is nonequilibrium, then, adding Eq. (3 10) to the
system (5.10), (5.11) for N = 2 we obtain a system of three equations:
for the determinafion of three unknowns:. a, 2o and éo;- For‘an acﬁﬁgl-
solution of systems (5.10), (5.11) and (}.8) 1t 1s neé;ssary‘to compute
the function w(®; T; zo, a). For Sc = 1 and n = 1 the system (5.8) |
with the boundary conditions ‘ '

 @=e <0, ¢O=:0=g0)=0, glx)=x)=glc)=t . (5.12)

colncldes with'a boundary-value problem flow past an infinite éylindef “
in the vicinity of the stagnation line in the presence of slip and
injection and was solved numerically by Beckwith [16] for a = 0,
-0.5, -1, for zo = 0, 0.5, 1 for two values of Prandtl numbers o =0.7"
and 1. Numerical integration was performed for o(z) = 1, 5o = 0.,2" .
" and 0.02. In addition, for @ = 0 the results of numerical intesration
for the axisymmetrical case (n = 2) with o = 0.7 and 1 are presented
in this work for several values of the parameters Zo. . '

The results of Bechwith's calculations [16] for the case -of a
plane, supplemented by numerical integration of the system (5;8) ;or

the axisymmetrical case where a = -0.5, -1, ¢ =.0.7, 1,‘and'Sq = 1 are



presented in Tables 1-4. Thus, for Sc = 1 and 0 = 0.7, 1 System of
Eqs. (5.10), (5.11), (3.8) or (5.1_.0), (5.11), (3.10) together with
Tables 1-4 solve the given problem in the plane and axisymmetrical case.

TABLE 1

n = 1 (plane case)

9 (0)=a
' o(0)ma | - . emy, ew0.7 .
. Owm Owml 55-0.3 liuo.ﬂ
) 0.6%89 0.6071 - ¢ -
0 0.05. -— — 0.6891 0.4576
. 0.9 0.9548 0,962 0.9109 0.8894
1 '1.2326 1.2326 1.2226 . 1.2326
0 0.3 0.2958 — -
—0.5 0.05 — e 0.385 0.1949
' 0.5 . 0.6509 0.6610 0.6430 0.6278
1 0.9652 0.95392 .0.9692 0.9692
0 0.0474 0.0705 - -
-1 0.05 —_ - 0.1572 -
0.5 0.4519 0.4551 - 0.4458 0.4280
. 0.7566 0.7568 0.7568 . 0.7566
. TABLE 2°
n = 1 (plane case)
. g . ) o
L), Omit T |l o -;“'—-‘(-3:- 20 -%g;- 70"
L o) =w 2 . D=t . Q=i
c=1"|6 -o.'( ‘o7 ! . -‘-0.7."3,--0.‘.' ‘ . ',-0'7' sj =02 '(&;
o 10.5067 ) 0.4362 | 1040 || — -~ — — a2
4 0.0 - —-— -— 0.4661 | 1.447  0.2969 | 1.160 —
0.5 {0.5521 10,4596 | 1,446 | 0.4484 | 1.150 | 0437 | 1,153 1.139
1 0.5703 1 0.4938 | 1.451- ;] 0.4958 | 1.151 0.{958 1.151 1.143
. 0" 0.2051 | 0.2103 | 0.9439 — - - — 0.9818
-5 10.05 - —_— — 10,2452 § 0.9751 | 0.1025 | 0.8663 —
105 10.23%0 | 0.2600 | 0.95%6 ! 0.2430 | 0.9519 | 0.2203 | 0.9791 | 1.015
1. 10.290 0.2934 | 1.5 ‘! 0.2934 | 1,005 | 0.2944 | 1.005 1.028
0 0.0211 { 0.0496 | 0.5565 - — — 0.841°
-1 0.05 - | - —_ 0.0519 | 0.6752 {-0.0432 — —
. 0.5 {0.0823{0.4152 1} 0.7419 |y 0.1010 { 0,7326 § 0.0922 | 0.7221 | 0.892
i 0.1168 | 0.1457 | 0.8016 { 0.1457 | 0.8016 | 0.1457 | 0.5016 | 0.918
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n = 2 (axisymmetrical case)

TABLE 3

L4 g) :la. 0' :01-6.11!.
e(0)=a I 20

omt l om9.7 sjmd2 l,'"- 0.02

0 | 0.5217 | 0.7820 ! 0.05 | 0.8673 - —
0.5 1 1,076 11,055 0.08 — 0.5820
0 0.6 — 1.1409 0:2 —_ 0.7483
0.8 — 1.208 0.5 1.024 0.9956

1 1.312 1,312 1 1.312 1.312

0 0.248 0.240 — - —_—

—0.5 0.5 | 0.551 0.4%6 —_— —_ —

: 0.8 | 0.70% 0.702 — — —

1 0.803 0.805 — —_ —

0 - - -— - -

—f 0.5 ] 0.251 0.285 — —_ -—
. i 0,491 0.491 -— - -

TABLE 4

n = 2 (axisymmetrical éase)

£ (0) L
Lo o), 3 .
: 20, Pui Ty rle., -’5%,— omas
cl)ma 2, 2
.0—1 0.7 E om 07 a,,o: '-,--olz ' -5-0.(2'
0 o0.coss | 05095 | 1.137 || 0.05 | 0.6038 | — -
0.5 | 0.7352 | 0.6200 | 1.145 0.08 - - -
0 0.6 —joess | = 02 | — —
0.8 0.7450 | 0.6350 — 0.5. 0.0087 1.146 1,149 .
1 | ol7cat | 06620 | 1,153 || 1 ot | — | =
0 0.155 | 0.229 - - - - -
)82 S — — p— —— —
o5 | 03 |0z ok | - -] - —~ -
1 0.252 | 0m6 | — - - - —
0 0.023 - - - - - -
-1 | 05 | 0033 - - - | = - -
i 0.008 -_— _ - - - —

6. Solufion of the

Problem for Any Prandtl and Schmidt Numbers

In order to obtain a solution to the problem for any values of

o and Sc we will evaluate the integrals which enter into system (5.10),

(5.11) by the asymptotic method. Assuming that the parameter 7 = o

(or Sc) is sufficiently large and that parameter a 1s sufficiently

small (a ~ 1/7) we will have



@(xX;T.5.0) = S exp (:-nr (tp () dn) dn ==S exp (—nvtan —nti(n))dn, (6.1)

where
() = \<r Wdy—an =7 2 &y
A=Y
2y - n2a B, {zy + naa) — (§ — 2q) 3;
a &= 51 '

(2—nYa*—n2a®(zy -+ naa) L na(l +c)(1 ) :; . (6.2)
€3 = : ] . .

a2(on — 8) a*+alndadi-ze(/ m—ﬁ)]-'-'nn’a’—-nzzz(l-,-s+3‘-!)(1._g.) :
€y = -
7 . . L

a =g¢" (0), 2 = 2(0).
Changing under the integral in (6. 1) to the variable of 1ntegra-

tion Z we obtain [17]

e .
0] (~x T' ..“U/ = SC nIav ~ NIz d' m f]m I'(.__”‘ :;' ‘) (n‘_) =% ("'+!)=
M=o

- _3— (aut
mo

:;. 15 “‘,'(m+x)p(rn_;’+_i)' e . (6.3)

ﬁhére'
: Y% (m41)
h=3(3)

-~ (mn+1)

Cdn= j exp (—ntan) z

From which, .asi'ri‘g (6.2), we obtain

bl - sa--nan
"0 =.!' . .dl =,—_.CG —nta,

0 R nva(z-- nan) | (zo--naaf A5y - Aag)—(1 —3z) 2,
2 41 : 1Ga® 20a ’
: Ie— ,‘3.‘3.‘:-:_ "l.'"‘:( 3= nam)  Tata (s, -k nyal? ataina(se- n:a)—(l—zg)zol
s 6 ¢ iq 72a® ' 15a¢

, W (ptnxa®  Tize -+ ~aa;
16+ 51 a* + ida?

2—nya*—n*a2*(zp-Lnza) L na (i L) {1 —2) :n

! {nz (2 - naa) — (1 — z;) zg) —

Wa . g
d. = :r_‘:‘ S v’a(zn 4= naad , 5nr32% (2p + nzal? _
T % -+ 7208
2 [na (20 + naa) — . —2) 3]
—_ T —

_ DuTa{zy - nga)® , ATR (z0 == n2a) [na (zg -~ nua) — (1 —3,) :;] ,

16-81a% 'T T 18ad -
AL [{(2—n}at—~nta?(z;-n2a)--na{l 4o )(1-:0).-;] 385 (20 + naa)t

' ila 12828 &
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11 (7o -+ n2a) . e
— 1o £ 120V 114 (20 + n20) — (1 = 20) 5]+

(13 (50 + n20) — (1 — 2 51

‘ 150 a3
(2—n)a’—n‘a’(:.-—nu¢)+m(i-i-u)(i—z.):' : '
108 o* - (‘0’*'”3“)"' , : (6.%)
__ n3(5n—8)a? +a [t + 20 (An — 6)) + row'ad — nf* (4 Fote (1—..).,

504 @
. Since z; enters into the coefficients dz, ds, ... then expansibn of
(6.3), generally épeaking, yields a trgnscendental equation for the
determination of w in terms of T, zo and a. But since the main con-
tribution to the value of the function w(»; T, zo, a) 1s introduced
by the first terms of the serles, thern substituting az, ceey Z& =
=3 (anc/6)‘/5r"(%), in the coefficinets, sufficient accuracy can be
obtained., Due to the weak dependence of the magnituded of a on ¢
(see Tables 1 and 3) in (6.3) the value of a may be substituted when
o = 0.7. Calculations according to Formula (6.3) indicate that for
a=0and T > 0.5 the first three terms yleld a value of w(w; T, 2o, O)
'with an error less than 1% (see Ref. 18). When a = -0.5 it 18 neces-
sary to calculate five terms of the seriles (6.3) in order to obtain an
error not exceeding 1%¥.

. By expanding (6.3) and limliting ourselves to the first term, we
obtain (%Ji. “ o ’

\;)h;) [&(HE-gm)+
F ) ’ " ’ (6.5)

£, 05 na) (
B (0) @ (o0, S¢, %, @)

Table 2 gives for comparison the values of g!(0)/z!(0) as cal—
culated according to Formula (6.5). When |a| < 0.5, Formula (6.5)
gives an error not excgeding 4,54 for all zo. When a = -1 the error
reaches a significant value and in Formula (6.5) 1t 1s necessary to
take into account subsequent terms, From the system (5.10), (5.11)

it follows that the case of a = -1 corresponds to "low-enthalpy"
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materials, i.e., materials having (n: - h:)/§5>> 1 and a high Qaporiza-

tion rate, For example, when 0 = 1, n = 1 (q: ’,h:)/ﬁs' (e, 0, zg, -1)

when zg = 0.5 and 47.7 when zo = 0, Thus, this case is of little

practical interest and we will correct formula (6.5) for a < -0.5.
Using asymptotic representation of (6.5), Eq. (5.11) may be

written in the form
"

%Z;':‘);’(&) I(G.Zu. Gosc) c: -’c:: f= e N =t (6'6)
_where 1, 2,0 S¢) =1+ 0,506 . 2 &, s: ARE ,’. s:-/.)"
. —an (e% —S¢*)]-

The System of Eqs. (5.10), (6.6) and (3.8) or (5.10), (6.6) and (3.10)
_determines a solution to the problem for any o and Sc.

T. Necessary and Sufficlent Conditions for Boiling at the
Sublimation Surface

If vaporization is equilibrium, then, as was pointed ouk in %,
bolling on the sublimation front is attalned when there.is infinitely
of‘iarge thermal fluxes from the gas.

' . We ﬁill now examine the conditions of reaching the boiling point

.duiing nonequilibrium sublimation (condition 3.10). During bolling,
the equilibrium vapor pressure p(0) becomes equal to the external

~ pressure poo and the temperature at the sublimatlion front reaches a

- maximum value To = Too for a given external pressure poo at the stagna-
tion point. Assuming then that po = Poo and To = Too in (3.10) and
eliminating the paraméfers a and co from (5.10), (5.11) and (3.10),

we obtaln the necessary and sufficient conditions of bolling or attain-
ment of maximum temperature at the sublimation front for & binary
mixture (c, = 0, K= 1, Le = 1) in the form ) |

=26~
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" -" ;th ‘eo"" " i
L {1 -+ - =50 o0.6,2),~— —
2o Z(Te) "T) [ “(H_h hmﬂ;)] (7.1)

the value of cg which enters into the parametér.

),; ey T. c.+c,,(i—c)
h:ao c’w «© -cfu <o

being determined from the ratio

e ch (Too~Too) o2
e L (7.2)

from which it follows that there are always finite values of determin-
ing parameters, safisrying condition (7.1) at which boiling ensures.
In fact, when the parameter (h: - hSo)/EKToo) is increased from 0 to
®, the left-hand part of Equality (7.1) increases monotonically from
0 to » while at the same time the right-hand part decreases monoton-
ically from ow(®; 0, zo, -(ne)~1) > 0 to ow(®; o, zo, 0) < ». Con-

sequently for given values of the parameters g, M s © c and
. J'1 PP

-0 there is an unique value of the parameter (h: - hjoo)/zgat which
bolling sets in.

} If Le # 1 then thé necessary an& sufficient condition of boiling
i1s obtalned by eliminatiné'parameter a from the system of two trans-
cendental equations (c_ = 0, K = 1)3

";o —_ ".'m [ h; hyy
¢ ; .
£ (Tw)

-+ .‘z;(l‘) Cc) I, 2, O, Sc)]=oo) (03 0, 2,, G)

(7.3)
N
ﬂnt[l -+ 'z—mi)a! Sc) l-l (0, 294 Oy SG)]"" {f = 0

" which has a wunique solution,

When the condition (7.1) 1s satisfied, the velocity and mass
velocity of sublimation are found from (4.3) and (4.4) respectively.
When Le # 1 the veiocity and mass velocity of sublimation during
boiling may be obtaihed according to the formulas (if for simplicity

JFID-TT-63-311/1+2+4 -27-



we set I x 1)

' T e, Ty, = Too) M._ %
D 2 - !.PI__‘ V 5 f [1 - "i _ o« _) ] R .
' P InfiTw + 1(To) +ppite, Tmoo [Q (620) — Q (1)) My Lo

Y, e, (T ‘-Toﬁ) AI ¥, -1
PXOD &= —/Poo l/.z‘.‘”}“[i +I(T°°) Ml ! Lc/ ] -

+rp T 1Q (O = Q) My
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